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Abstract
This paper describes an algorithm that uses multi-scale

Gaussian differential features (MGDFs) for face recogni-
tion. Results on standard sets indicate at least 96% recog-
nition accuracy, and a comparable or better performance
with other well known techniques. The MGDF based tech-
nique is very general; its original application included
similarity retrieval in textures, trademarks, binary shapes
and heterogeneous gray-level collections.

1 Introduction
Facerecognitiontechnologiescansignificantly impact

authentication,monitoring and image indexing applica-
tions. This paperpresentsan algorithmto computesim-
ilarity of facesasa whole. Thetaskis to querya database
using the imageof a faceand then have the systemei-
ther ascertainits identity, or retrieve the top � similar
matches.As such,the techniqueis generalandhashith-
erto beenusedsuccessfullyin imageretrieval taskssuch
as finding similar scenes,trademarks,binary shapesand
textures[23, 24, 25]. Theapproachis basedonthetwo hy-
potheses;first thatvisualappearanceof a faceplaysanim-
portantrole in judging similarity andsecond,multi-scale
differential featuresof the imagebrightnesssurfaceform
effectiveappearancefeatures.

Thefirst hypothesisis basedon theobservationthatvi-
sualappearanceis an importantcuewith which we judge
similarity. We readilyrecognizeobjectsthatsharea visual
appearanceassimilar, andin theabsenceof otherevidence,
arelikely to rejectthosethatdonot. A precisedefinitionof�
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visualappearanceis difficult. Thephysicalandperceptu-
al phenomenathatdefineappearancearenot well known,
and even when thereis agreement,suchas the effect of
object(3D)shape,surfacetexture,illumination,albedoand
viewpoint, it is non-trivial to decomposean imagealong
thesecomponents.However, early recognitionalgorithm-
s [9, 16, 32] broughtforwardthenotionthat thesimilarity
betweencomputationalrepresentationsof imagedbright-
nesssurfaces,in many cases,correlateswith similaritiesin
visualappearanceof objects.Therefore,it is notunreason-
ableto develop appearancerepresentationsandsimilarity
measuresto suit the semanticsof the retrieval or recogni-
tion task.

In this paper, an appearancerepresentationfor face
recognitionusingdistributionsof local featuresof the im-
agebrightnesssurfaceis constructed.Local featuresare
obtainedby applyingoperatorsto the imagethat, equiva-
lently, canbethoughtof astunablespatial-frequency filter-
s, statisticaldescriptorsof the brightnesssurface,or ap-
proximationsof the local shapeof the imagebrightness
surface. Specifically, multi-scaledifferential featuresare
used [3, 5, 7, 11, 15, 23, 24, 25, 26, 21, 28, 29] andthis
choiceis motivatedby arguments[3, 7] thatthelocalstruc-
ture of an imagecan be representedin a stableand ro-
bustmannerby theoutputsof asetof multi-scaleGaussian
derivativefilters (MGDFs)appliedto animage.In orderto
deduceglobal similarity betweentwo faceimages,multi-
scaledifferential featuresare composedinto histograms
andcorrelated.

Thefirst partof this paperbeginswith a brief review of
scale-spacetheoryunderlyingMGDFsandendswith anal-
gorithmto deduceglobalsimilarity. In thesecondpart,this
algorithmis appliedto facerecognition.Usingthedatabas-
esandprotocolfor evaluationdescribedby Simet. al. [30],
thispaperdemonstratesthatthealgorithmpresentedhereis
at leastaseffective whencomparedto severalothermeth-
ods.
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1.1 Related Work

Facerecognitionhasreceived significantattentionand
it is beyond the scopeof this paperto fully investigate
the available techniques.Insteadwe describetechniques
thataremostrelevant to our approach.Sim et al [30] use
a relatively simple techniqueof matchingdecimatedim-
ageswith extremelygoodresults.Althoughour approach
is completelydifferentwe usetheir evaluationmethodol-
ogy. Othertechniquesfor facerecognitionhave alsobeen
developedusingprojectionprofiles[33], deformablesur-
faces[14], hiddenMarkov models(HMM) [27], andself-
organizingmaps[10]. Noneof thesetechniquesarerelated
to the onespresentedhere,but comparisonscanbe made
by readingtheresultspresentedhereandthoseresultspre-
sentedby LawrenceandSim[10, 30]. ResultsontheFER-
ET collectionwith othertechniquesmayalsobe found in
Phillips [19].

From an appearancerepresentationstandpoint,princi-
pal componentanalysis(PCA) basedtechniquesaremore
relevant. PCA waspioneeredby Kirby andSirovich [9]
asa representationfor faceswhich wasalsodevelopedin-
to an effective facerecognitionsystemby Turk andPent-
land [32], with generalizationsto multiple views [16, 18],
illumination changes[16], andreplicatedon otherobject-
s [16]. Sincethesuccessof eigendecompositiondepend-
s on the objectsbeingcorrelatedan attemptwasmadeto
overcomethis restrictionby Swetset. al [31, 36]. They
extendthe traditionalPCA methodto multiple classesof
objectsusingFischer’s discriminantanalysis[1]. Theap-
proachpresentedin this paperis differentbecauseEigen
decompositionsare not usedto characterizeappearance.
Further, the methodpresentedhereusesno learningand
doesnot requireconstantsizedimages.In fact,oneof the
conclusionsdrawn from thispaperis thatascale-spacede-
composition(ratherthan an eigenone) performsequiva-
lently well. That is, an unbiasedrepresentationperforms
aswell (if not better)thanthelearnedrepresentation.

Appearancefeaturescan also be extractedin the fre-
quency domainandin this sensearecommonlyrelatedto
texture features. In the context of imageretrieval Ma et.
al. [12] useGaborfilters to retrieve imageswith similar
texture.Gaborjets[34] havealsobeenusedfor facerecog-
nition. We find that a comparisonbetweenGaussianand
Gaborfilters is instructive. Gaborfilters are sine modu-
latedGaussianfunctions,which canbe tunedto respond
to a bandwidtharounda certaincenterfrequency. They
exhibit compactnessin spaceand frequency, are optimal
in the senseof the uncertaintyprinciple (time-bandwidth
product)andarecomplete.Gaborfilters arenot equivari-
ant with rotations,andseparableimplementationsareex-
pensive. In contrast,Gaussianderivativesexhibit thesame
time-bandwidthpropertyand althoughthey have infinite

support,they canbe safelytruncatedat aroundfour stan-
darddeviations. While Gaussianderivativeshave coupled
bandwidthandcenterfrequency, in practiceseparatetun-
ing is notnecessary. Rather, thederivativesprovidea“nat-
ural” samplingof thefrequency space,becausethey repre-
sentthe ordersof approximationin a Taylor seriessense.
Thesignificantadvantageof usingtheGaussianderivatives
is that, they areequivariantwith rotations[4] eliminating
theneedfor explicitly orientedfilters andalsosupportthe
formulationof rotationalinvariants. Gaussianderivatives
are separableand efficient implementationsare possible.
Thereareseveralotherinterestingpropertiesandtheread-
er is referredto [6, 23] for a morebasicreview.

2 Computing Global Similarity
The stepsinvolved in deducingsimilarity betweena

query face image and a databaseimage are as follows:
Databaseimagesarefiltereda priori with Gaussianderiva-
tives,andthen,at eachpixel, the gradientorientationand
surfacecurvatureis computed.A query imageis filtered
thesameway andmulti-scalehistogramsof curvatureand
orientationarecorrelatedto measuresimilarity. In theau-
thenticationtasktheidentityof thebestmatchingimagein
thedatabaseis ascribedto thequeryandin themonitoring
task,the top � arepresentedto the user. Below, the use
of differential featuresand the stepsin the algorithm are
discussed.
2.1 Differential features:

The simplestdifferential featureis a vectorof spatial
derivatives. For example, given an image � , and some
point, ��� the first two ordersof spatialderivativescanbe
usedas a feature(vector). This vectorapproximatesthe
shapeof the local intensitysurfacein the senseof a sec-
ond orderTaylor approximation.Including higherorders
producesa morepreciseapproximation.Derivativescap-
tureusefulstatisticalinformationabouttheimage.Thefirst
derivativesrepresentthegradientor ”edgeness”of the in-
tensityandthesecondderivativescanbeusedto represent
curvatures(bars,blobsandsoon).

However it is importantthatderivativesbecomputedin
a stablemanner. Derivativeswill be stableif, insteadof
usingjust finite differences,they arecomputedby filtering
an imagewith normalizedGaussianderivative filters (ac-
tually any 	�
 functionwill do [3]). In two dimensions,a
Gaussianderivative is thederivativeof thefunction

���� ������� ���� ����� � ��! � �#"%$&�� ���
In the frequency domain,a Gaussianderivative filter is

a band-passfilter, asshown in Figure1 (one-dimensional
case).Computingderivativesby filtering with a Gaussian
derivative at a certainscale,therefore,implies that only
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Figure1: Gaussianderivative filters in the frequency do-
main.

a limited bandof frequenciesare beingobserved. Thus,
in order to describethe original imagemore completely,
a multi-scalerepresentationis necessary. Samplingthe
scale-spaceof theimagebecomesessential.

2.2 Gaussian scale-space:
Thenecessityof a multi-scalerepresentationdescribed

above canbeconcludedfor any smoothband-limitingfil-
ter by usingthecommutativity of differentiationandcon-
volution. The Gaussianhappenedto be a convenien-
t function; it hasnaturalscaleparameterization,smooth-
nessandself-similarityacrossscales.However, theGaus-
sian is more than just convenient. Thereare compelling
theory and implementationrelated argumentsfor using
multi-scaleGaussianderivativesto form appearancefea-
tures. In particular, it has been shown by several au-
thors [3, 5, 11, 26, 35], that under certain generalcon-
straints,the (isotropic)Gaussianfilter formsa uniqueop-
eratorfor representinganimageacrossthespaceof scales.
Structures(suchasedges)observedat a coarserscalecan
berelatedto structuresalreadypresentat a finer scaleand
notasanartifactof thefilter. In general,theGaussian(lin-
ear)scale-spaceservesasan unbiased(without usingany
otherinformation)front end(pre-processor)for represent-
ing theimagefrom whichdifferentialfeaturesmaybecom-
puted. It is beyond the scopeof this documentto engage
in a full discussionaboutthe scale-spaceimagerepresen-
tation and,instead,the readeris referredto the following
papers[3, 11, 26, 35, 23]. Otherreasonsfor choosingthe
Gaussianarepresentedin Section1.1.
2.3 Curvature and Orientation:

Several differential featurescan be constructedfrom
derivativesandseveral representationsandmethodshave
beendeveloped[21, 28, 25, 29, 24, 23, 22] for recognition
andretrieval. Thechoiceof thesefeaturesdependsonsev-

eralfactors,primary(amongthese)is toleranceto rotation,
illumination,scalesincevariationsin theseaffectsappear-
ance.Herewe arguefor two particularfeatures.

Since the task is to robustly characterizethe 3-
dimensionalintensitysurface(X, Y, Intensity),localcurva-
turesareappropriatebecausethesurfaceis uniquelydeter-
minedfrom them. In particular, two principal curvatures,
namelythe isophoteandflowline curvescanbecomputed
at a point,andrepresentthecurvaturesof theiso-intensity
contoursandthegradientintegralcurves.In fact,principal
curvaturesarenothingmorethanthesecondorderspatial
derivativesexpressedin acoordinateframe(gauge[3]) de-
terminedby theorientationof the local intensitygradient.
Theprincipalcurvaturesof theintensitysurfaceareinvari-
antto imageplanerotations,monotonicintensityvariations
andfurther, their ratiosare,in practice,quite tolerantto s-
calevariationsof the entire image. The isophote(N) and
flowline (T) curvaturesaredefinedas[8, 3]:

� � ')(+* � �-,.�0/1�-,2/3!4� �, �-/-/3!4� �/ �-,2,�5 (1)6 � '87 * � ,2/  � �, !4� �/ � " � , � /  � /0/ !4� , , � 5 (2)

' �  � �, " � �/ �:9<;= (3)

�-,��>�-,  �?����� and �-/@�>�0/  �?����� arethefirst orderpar-
tial spatialderivativesof imageI aroundpointp, computed
usingGaussianderivative at scale � . Similarly, �-,2,��A�-, / ,
and �0/-/ are the correspondingsecondderivatives. The
isophotecurvature N and flowline curvature T are then
combinedinto a ratio calledtheshapeindex, expressedas
follows [8, 2, 15]: 	B�DC E �GF !IHJ 7LKNMOKNPRQTS�UQV9WUYX � Theindex
valueC is undefinedwheneitherN andT areboth zero,
andis, therefore,notcomputed.This is interestingbecause
veryflat portionsof animage(constantor constantslopein
intensity)areeliminated.The shapeindex is in the range
[0,1]. Nastar[15] alsousestheshapeindex for recognition
andretrieval. However, hisapproachusescurvaturescom-
putedata singlescale.Clearly, astheexperimentssuggest
(seeSection3), this is not enough.

Thesecondfeatureusedis local orientation.Local ori-
entationis the directionof the local gradient.Orientation
is independentof curvature,is stablewith respectto scale
and illumination changes.The orientationis simply de-
finedas Z �[KNMOKNP �  � / �A� , � NotethatP is definedonly at
thoselocationswhereC is andignoredelsewhere.As with
theshapeindex P is rescaledandshiftedto lie betweenthe
interval [0,1].

Feature Histograms: Histogramsof the shapeindex
and orientationare usedto representthe distributions of
featuresover an image. Histogramsform a global rep-
resentationbecausethey capturethe distribution of lo-
cal featuresand they are the simplestways of estimat-
ing a non parametricdistribution. In this implementa-



tion, curvatureandorientationaregeneratedat several s-
calesandrepresentedasa onedimensionalrecordor vec-
tor. Therepresentationof theimageI is thevector \�]��@^_�`  � H � �2�0� _a`  �cb��:� _ed  � H � �0�2� _ed  ��bc�<f .

_�`
and

_ed
are

the curvatureand orientationhistogramsrespectively. It
shouldbe notedthat [28] usehistogramsof variousdif-
ferential features.However, the differencebetweenthe t-
wo approachesis thattheirmethodusesmulti-dimensional
histogramsof featuresthatdoesnotincludecurvature.Fur-
ther, their representationsarecomputedat a singlescale.
Multi-dimensionalhistogramstendto bevery sparse,and
further, arecomputationallymoreexpensive to match.We
believethatusingonedimensionalhistogramsatseverals-
cales(andstringingthemtogether)providesa sufficiently
rich representationof theimage.

Figure2: Examplesof theFERET(firstpair)andORL(next
four pairs)sets.

Matching feature histograms: Two representations
are comparedusing normalizedcross-covariancedefined

as g ]Gh � i�jlk?mnpo iqjGk�mrsGs i jlk?mn sGsGsGs i jGk�mr sGs Where \�tvuTw] �I\ ] !8x � KNP  \ ] � .
Thereareother possiblemeasures,suchas the Kulback-
Leibler [1] and Mahalanobis[13] distanceswhich could
beused.Thequeryhistogramvector \zy is comparedwith
eachdatabasehistogramvector \ ] . Thecorrespondingim-
agesarerankedby their score.We call this algorithmthe
1D curvature/orientationor CO-1algorithm.

3 Face Recognition
Two variationsof the algorithmarecomparedfor face

recognition.Thefirst is CO-1,wherehistogramsarebuilt
overtheentireimage(CO-1).Thesecondis PCO-1,where
theimageis partitionedinto threetiles roughlycoveringa
third of the imageandhistogramsfor eachtile aregener-

atedseparatelyandconcatenated(PCO-1). Assumingthe
imagesareroughly facesegmentedto begin with, the top
tile correspondsto the foreheadregion, the middle tile to
themid-faceandthebottomtile correspondingto thechin
region.

Datasets: The following three datasetsare usedfor
evaluations. 1. ORL Set [17]: the ORL (Olivetti Re-
searchLab) collectionis a publicly availablecollectionof
400 faces. This collection contains40 individuals. The
databasecontainssmallview, gesture,andintensityvaria-
tion. Seethesecondthroughfourth facepair of Figure2.
2. FERETSet[19]: TheFERETdatasetis maintainedby
NIST and the CDROM contains3737images. However,
our testswererepeatedin exactly the sameconfiguration
asSim [30] andthereforewe only used275 imagesof 40
individuals. Theseimagescontainbust photographswith
varyingbustcoverage,andsmall facialgestureandimage
illumination changes.Seefirst facepair in Figure 2. 3.
UMASS TeaCrowd Set [20]: The UMassTeaCrowd set
consistsof 119imagesof facesextractedfrom a livevideo
feedof camerasmonitoringa TeaParty. Therearetotal of
15peoplein thiscollection.Thesefacescontaingesture,il-
lumination,andview variations,in additionto motionblur
andocclusion.SeeFigure3.

Evaluation: The evaluationmethodologyfollows the
one describedby Sim et. al. [30]. During eachtrial a
databaseis randomlysplit into a trainingsetanda testset.
Theconfigurationsof trainingsetpertrial useseither5 ex-
emplarsper personor the greatestnumberlessthanhalf
thenumberof facesavailablefor thatperson,whichever is
smaller. The remainingfacesfor the personbecomethe
testset.Eachof thesetestsetimagesbecomesa query. A
queryis matchedwith all of thetrainingsetandtheidenti-
ty of thebestmatchingtrainingsetimageis ascribedto the
query. Over a large (100) numberof trials the proportion
of correctlyidentifiedpeopleis reportedastherecognition
rate.For example,in theORL seta trial will consistof 200
trainingandtestimageseach.Thus,over100trials 20,000
queries(testset)arematchedwith a randomtraining/test
pick at every trial.

Examples: In Figure2, queriesandcorrespondingex-
emplarimages(selectedduring sometrial) they matchto
areshown. The first facepair is drawn from the FERET
set. Notethat theseimageswerenot processedto localize
thefaceportionalone.Theremainingfour pairsin Figure2
show resultsfrom the ORL set. Note that the secondpair
in the secondrow in Figure2 is a mismatch.The correct
identity is not recovered,but qualitatively boththesefaces
shareasignificantsimilarity in appearance.

In Figure 3, several examplesfrom the TeaCrowd set
areshown from a retrieval perspective. Each”row” of this
Figurecontainssix images,thefirst beingthequeryandthe



Figure3: Examplesof theTeaCrowd setfrom a retrieval point of view.

remainderbeingthe imagesmatchedin rank order. Each
imageis labeledby its matchscoreto thequery(1.0ismax-
imum). Theseexamplesshow recognitionfrom a retrieval
pointof view. Thequeriesincludegesturevariations,scale
variations,occlusions,motionblur andview variations.

Analysis: The performanceof the algorithm is de-
picted in Table 1. On all threesetsthe performanceis
very goodandcomparableto otheralgorithms,specifical-
ly, thosebasedon Principalcomponentanalysis[32] and
CMUs [30] technique.Thereaderis referredto Sim’s pa-
per [30] for additionalcomparisonswith othertechniques
(they performworsethanCMUs technique). In Table1,
column2 indicatesthe evaluationparametersused. In al-
l methods5 exemplarsare usedand when it is not pos-
sible to do so, only half the available are used. In our
techniquenothing is done to the imagesin termsof in-
tensitystretching,warpings,faceextractionor generating
syntheticimages.In contrastin Sim’s techniquebasedon
matchingthumbnails,syntheticimagesaregeneratedfrom
exemplars(rotatedandslightly scaledversions)andthese
becomepartof the trainingset. A query’s scoreagainsta

databaseindividual is themeanover thescoresthat it gets
for all trainingsamplesof theindividual. Wepick themax-
imum. The implementationof Eigenfacesreportedin the
samepaperalsousessyntheticimagesfrom theexemplars,
40EigenvaluesandtheL2 normto comparethequeryvec-
tor. In this case,like our method,the identity of the best
matchingimageis ascribedto thequery. Note that there-
sultsreportedherefor Eigenfacesarethebestof theresults
reportedby Sim et. al. [30](also seeLawrence’s compar-
isons[10]).

Thealgorithmpresentedherehastwo principalparam-
eters;scalesandthebin sizesof thehistograms.Thegraph
in Figure 4, depictsthe performanceof the systemwith
variationin scalefor theORL setusingtheCO-1algorith-
m (othersetshavesimilar results).For thisgraphthenum-
berof curvatureandorientationbinswereeachfixedat40.
TheX-axisof thisgraphis abyte-encodednumberthatin-
dicatesthescalesused.TheLSB meansascalevalueof 1,
thenext leastsignificantbit correspondsto ascalevalueof{ �

andsoon throughstepsof
{ �

, to anMSB valuerep-
resenting| { �

. Thevalid numbersfor this byteare1-255,



Technique EvaluationParameters ORL FERET TeaCrowd
UMASSPCO1 5 samples,0 synthetic 98% 96% 96%

CMU L0, 5 samples,10synth 97% 96% .IP.
UMASSCO1 5 samples,0 synth 95% 90% 90%

Eigen-face 40 vector, L2, 5 samples,10synth 95% 90% .IP.

Table1: Theperformanceof MGDF methodswith PCAandCMUs techniques

Figure4: Theperformanceon theORL set.For this graph
40 binswereusedin thehistogram.

1 implying the useof only scale1, 255 implying the use
of all 8 scales.The Y-axis of this graphdepictsrecogni-
tion rateover100trials. Thustherecognitionperformance
with respectto scalesis exhaustively plotted. Thereare
threeplots in Figure 4. The lower onecorrespondingto
the useof 1 exemplar, the middle onecorrespondingto 3
exemplars,andthetop onecorrespondingto 5 exemplars.

Several conclusionscan be drawn from this figure.
First, the performanceimproves categorically with in-
creasein exemplars,andthis is truefor all variationsof the
algorithmspresentedhere.Second,asinglescale,which is
characterizedby largedipsin theplot is indicativeof poor
performance,andshows thenecessityfor multiple scales.
Third, all eightscalesarenotnecessary. It canbeobserved
for examplethat a packed setof scalesof smallerextent
(suchasbit code96) give approximatelythesameperfor-
manceasusingall scales(suchasbit code255). Finally, a
densepackingof scalesis not essentialeither. A sequence
of scalesthatis denselypacked,suchas

�0�0� �.�}�.� �2�0� , caus-
es only marginal changesin accuracy in relation to one
that is coarser, suchas

�0�0� � E � E �0�2�:�
In mostcaseswe find

thatanoctavespacingis sufficient,andtwo octavesepara-
tion resultsin lessthan �1~ drop in recognitionaccuracy.

This suggeststhat the multi-scalerepresentationcanhave
asomewhatlargesamplewidth acrossscales.This is good
news becauseit implies that significant”compression”in
therepresentationis possible.Theshapeof this graphre-
peatsitself for variousbin combinations.

Figure5: RecognitionPerformancewith variationin Bin
sizesfor CO-1onORL set.All scaleswereused.

Figure6: RecognitionPerformancewith variationin Bin
sizesfor PCO-1onORL set.All scalesareused.

The secondfactor that wasvaried is the bin size. For
the experimentsconductedall the scaleswere usedwith
5 exemplarsand the bin sizesweresystematicallyvaried
from 10 to 100for curvatureandorientationindependent-
ly, thereforegiving amatrixof 100combinations.Surpris-
ingly, therecognitionratesheldverystable:PCO-1varied
between97.2%and98.2%(seeFigure6; andCO-1 (see
Figure5) between94.1%and95.2%.Thevariancefor any
givenobservationover the trials waslessthan1%. Final-
ly, in termsof computation,it takesa few milli-seconds
to recognizeapproximately200imagesfrom thedatabase,
andin contrastit takesabout0.4 secondson a �}E}E}� _+�



Figure7: Facelocalizationandrectificationfor recognitionin akiosk.

PentiumII processorwith sufficientmemory.

4 Summary and Conclusions
Theresultspresentedin this paperarevery exciting for

the following reasons.First, thecurvatureandorientation
basedmethodperformswell; especiallybecausethereis
no learninginvolvedwith respectto any of theparameters.
Arguably, arepresentationbasedonthedifferentialdecom-
positionof theimageat multiplescalesis giving compara-
bleperformanceto onebasedon learningacompactrepre-
sentationfrom thedata,namelyPCA.Thus,we find these
featuresto begoodfrom anappearancesimilarity point of
view. Second,while scaleis important,it seemsin faces,
the changeof the feature(blur) with scaleis ratherslow.
This is why densesamplingof scalesis notnecessary. This
is goodfor a multi-scalerepresentation.Third, the appli-
cationof a”spatial” partitiondramaticallyimprovesthere-
sults,suggestingthatexplicit representationof spacemay
be necessaryand might be the principal reasonwhy the
recognitionratesimprove. In conclusion,we believe that
therepresentationpresentedhereis turningout to bequite
versatile.

Weareextendingthiswork towardsconstructingakiosk
thatcanbeusedfor authenticationusinginexpensivecam-
eras(QuickCams).Our presentapproachis to pre-process
acquiredimagesby localizing facesand detectingfacial
features.Oncedetectedfacial featurescanbe usedto es-
tablish a coordinatebasis from which partitions can be
computedfor PCO-1. One way to do this is to simply
rectify the facefor orientationand scale. Further, facial
featuredetectionprovidescoarseinferenceof facial view
andthus,matchingcanbe speededup to nearbyviews in
thedatabase.For example,in Figure7 threeimagestaken
at thekiosk areshown. Thefirst is thefull imagetakenby
thecamera,thesecondthedetectedfacewith anoverlayof
facialfeatures,andboxesaroundthe(final) localizationof
eyes.Thethird is theorientationrectifiedview of theface
thatsimultaneouslyusestheorientationhistogramandthe
inter-eye angleto rectify the face.While completeexper-
imentationis forthcoming,in the context of this paper, it
maybenotedthatfacialfeaturesarelocalizedusingmulti-
scaledifferentialfeatureswith naturalscaleselection.
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